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We consider adiabatic charge transport through one-dimensional open chain for two �-like pumping sources.
We obtain explicitly the charge Q pumped within a period. This charge turns out to be proportional to the
conductance G0. For weak pumping perturbation �, the charge Q is proportional to the area of the contour in
parametric space �2 sin �, where � is the phase difference of the oscillations of the two parameters. There is
an intermediate regime, where Q is proportional to the length of the contour � and to sin � /2. For large
pumping strength � and not too small � the charge decreases as �� sin ��−3.
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I. INTRODUCTION

The phenomenon of adiabatic charge pumping, discussed
by Thouless,1 has attracted attention of both experiment-
alists2–4 and theorists.5–11 By pumping we usually mean the
dc current �or flow of a fluid� which takes place due to some
periodic ac perturbation�s� of the system. Such a dc current is
not a persistent current—not an equilibrium response to an
external perturbation. Nevertheless it may be entirely adia-
batic. It means that the charge transferred within the period
of the pumping t0=2� /� is independent of this period and
remains finite, when the period tends to infinity ��→0�. The
pumping provides a new way of generating dc currents,
which is quite different from the usual application of a dc
voltage, and thus can have important practical advantages.

An experimental realization of an adiabatic electron
pumping through a quantum dot was reported by Swiktes et
al.4 A similar phenomenon, drag of electrons by a traveling
acoustic wave in a semiconductor device, was demonstrated
by Talyanskii et al.3

Until now, two approaches to the theoretical description
of adiabatic charge transport have been proposed. One of
them7,9 is based on the conventional Green’s function for-
malism. It allows to evaluate explicitly the pumping current
for small amplitudes of the pumps and only for weakly dis-
ordered systems. The other approach5 is based on the scat-
tering theory. In spite of these recent developments, many
details of the theory, namely the magnitude of the pumped
current, its dependence on external tunable parameters �e.g.,
magnetic field�, the relation between ensembles averaged
current and its mesoscopic fluctuations, the conditions under
which the current is quantized, etc., are not completely un-
derstood. There are few theoretical predictions to compare
with existing experiments. It is also unclear how this effect
changes in the crossover from weak to strong localization.

In this paper we study analytically the pumped current in
one-dimensional �1D� Kronig-Penney models, where elec-
trons are subject to a potential that can be represented as a

sum of arbitrarily located delta functions with arbitrary
weights Vl

Ṽ�x� = �
l=1

N

Vl��x − xl� . �1�

Time dependence of the factors Vl can serve as pumping
perturbations. Our goal is to evaluate explicitly the scattering
matrix elements and their parametric derivatives for a given
set of the amplitudes by the method of the characteristic
determinant.12 This approach seems to provide a natural
model for the study of both weak and strong disorder on the
pumping current.

II. PUMPED CURRENT IN TERMS OF THE
CHARACTERISTIC DETERMINANT

Consider the pumping charge Q transferred during a
single period trough a 1D chain of an arbitrary potential
shape V�x� at zero temperature. Let two parameters of the
system be modulated periodically. The transferred charge is
independent of the frequency � and, as shown in Ref. 5, is
given by

Q =
e

�
�

A

��X,Y�dXdY , �2�

where ��X ,Y� is defined as

��X,Y� = �
�

Im
�s1�

*

�X

�s1�

�Y
, �3�

s1� ��=1,2� are the elements of the scattering matrix s and
X=X�t� and Y =Y�t� are two external parameters adiabati-
cally varying with time. �A denotes integration within the
area encompassed by the contour A and the asterisk indicates
complex conjugation. According to Eq. �3� ��X ,Y� has a
meaning of adiabatic curvature.
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To relate the pumped charge Q to the scattering matrix
elements s	� themselves �not to their derivatives� we use the
Fisher-Lee relation13 between the scattering matrix and the
Green’s function �
=1, 2m0=1, and k=�E�

s	� = − �	� + 2ik G�x	,x�� . �4�

It is well known that the functional derivative of the Green’s
function �G /�V�x� can be written as the product of two
Green’s functions14

�G�x	,x��
�V�xj�

= G�x	,xj�G�xj,x�� . �5�

With the help of Eqs. �4� and �5�, one can express the adia-
batic curvature equation �3� fully in terms of the Green’s
function

��X,Y� = 4k2 Im�G*�x1,X�G�x1,Y��
�

G*�X,x��G�Y,x��� .

�6�

As we will see below, for certain cases Eq. �6� can be ex-
pressed only through the elements of the scattering matrix s.
Now we consider a system where the scattering potential
V�x� vanishes outside certain interval: V�x�=0 for x�xL and
for x�xR. Let the pumping perturbations be �-like potentials

Vp�x,t� = 2kX�t���x − xI� + 2kY�t���x − xII� , �7�

and the amplitudes X , Y demonstrate periodic time evolution
with the same period t0=2� /�. It is convenient to divide the
interval xL�x�xR into three blocks at points x=xI and x
=xII �xL�xI�xII�xR�. The left block is the interval between
xL and xI, the middle block is between xI and xII, and the
right block is between xII and xR �see Fig. 1�. Using the
relation G�x	 ,x�G�x ,x��=G�x	 ,x��G�x ,x�, valid for x	�x
�x� �see, e.g., Ref. 15�, one can rewrite Eq. �6� as

��X,Y� =
1

4k2 Im	�tLI
* tLII�2 + T�rLI

* + rLII� + rLII� rLI
* �
 . �8�

Here tLI is the amplitude of transmission through the left
block for an electron incident from the left. tLII is the ampli-
tude of transmission through the left and middle blocks com-
bined. rLI is the reflection amplitude off the same two blocks
�the electron is incident from the left�. And finally, the rLII� is
the amplitude of reflection off the middle and right blocks
combined for an electron incident from the right. T= tt* is the
coefficient of transmission through the whole system.

Below, we concentrate on the simplest case where xI=xL
and xII=xR, and thus simplify Eq. �8�

��X,Y� =
1

4k2 Im�t2 + r*t2 + r*T� . �9�

To arrive at Eq. �9� we have used the time-reversal symmetry
for t and the current-conservation requirement,16 which im-
plies tr*+r�t*=0 with r and r� being the reflection ampli-
tudes from the left and the right of the scatter, respectively.

For concreteness, we will evaluate t and r for a disordered
Kronig-Penney model:

V�x� = �
l=2

N−1

Vl��x − xl� . �10�

The Hamiltonian of the particle is

H = k2 + V�x� + Vp�x,t� , �11�

where Vp�x , t� is determined by Eq. �7� with xI=x1 and xII

=xN.
We can express the reflection and transmission ampli-

tudes, r and t, for the potential V�x� from its characteristic
determinant DN, introduced in Ref. 12:

DN = det Mn,l
�N�, �12�

where

Mn,l
�N� = �nl +

iVl

2k
exp�ik�xl − xn�
 , 1 � n,l � N . �13�

The characteristic determinant DN can be presented as a
determinant of a tridiagonal matrix that satisfies the follow-
ing recurrence relationship:

DN = ANDN−1 − BNDN−2, �14�

where DN−1 �DN−2� is the determinant equation �13� with the
Nth 	and also the �N−1�th
 row and column omitted.

DN� = det Mn,l
�N��, 1 � n,l � N�, �15�

and Mn,l
�N�� is still determined by Eq. �13�.

The coefficients AN , BN can be obtained from the explicit
form of Mn,l

�N�. For N
1 we have

AN = 1 + BN +
iVN

2k
	1 − e2ik�xN−xN−1�
 , �16�

and

BN =
iVN

VN−1
e2ik�xN−xN−1�. �17�

The initial conditions for the recurrence relations are

D0 = 1, D−1 = 0, A1 = 1 +
iV1

2k
. �18�

The transmission amplitude t is the inverse of the character-
istic determinant DN multiplied by the phase accumulated
during the transmission, i.e.,

FIG. 1. General potential between xL and xR with two varying
delta functions at xI and xII.
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t = eik�xN−x1�DN
−1, �19�

while the reflection amplitude r is

r = −
1

iX

DN − D−1+N

DN
− 1 � i

� ln t

�X
− 1, �20�

where D−1+N is the characteristic determinant without the
first delta function �i.e., X=0�.

The determinant DN has a well-defined continuous limit
when the potential V�x� is an arbitrary smooth function of
coordinate x. It is nothing but the inverse transmission am-
plitude D= t−1. Let V�x�=0 for x
x0. One can determine D
as

D = lim
y→x0

D�y� . �21�

Here D�y� is the inverse amplitude t�y� of the transmission
from the left through the potential

Vy�x� = V�x���y − x� , �22�

where ��z�=0 for z�0 and ��z�=1 for positive z. For the
complex reflection amplitude r�y� and the inverse transmis-
sion amplitude t−1�y�=D�y� can be calculated using two
first-order differential equations with appropriate initial
conditions17

dr�y�
dy

= −
1

2ik
V�y�	eiky + r�y�e−iky
2, �23�

dD�y�
dy

=
1

2ik
D�y�V�y�	1 + r�y�e−2iky
 . �24�

From these two equations can be obtain a second-order dif-
ferential equation for D�y�

d2D�y�
dy2 + �2ik −

d ln V�y�
dy

�dD�y�
dy

− V�y�D�y� = 0.

�25�

III. CALCULATIONS

In the absence of the pumping perturbations 	in Eq. �11�
Vp=0
 the elements of the scattering matrix

s0�E� = �r0L t0

t0 r0R
� �26�

can be written as

t0 = �G0ei�0, �27�

r0L,R = �1 − G0ei��0±�a�, �28�

where G0 is the conductance of the block with N−2 delta
potentials. �0 is the phase of the transmission amplitude and
�a is the phase difference between the reflection from the left
and from the right.

Our goal now is to write explicitly the dependence of the
characteristic determinant DN on X and Y. Applying the re-

currence relation for the characteristic determinant, Eq. �14�,
to both ends of the system we rewrite DN as

DN�X,Y� = D̃0	1 + AiX + BiY + CXY
 , �29�

where D̃0 is the characteristic determinant for the case when
Vp=0 �i.e., X=Y =0�, and A , B, and C are coefficients inde-

pendent of X and Y that can be expressed through D̃0. These
coefficients are defined as

A = 1 − i�1 − G0exp�i	�0 + �a + 2k�x2 − x1�

 , �30�

B = 1 − i�1 − G0exp�i	�0 − �a + 2k�xN − xN−1�

 , �31�

C = 2iexp�i	�0 + k�xN − xN−1 − x1 + x2�



��sin	�0 + k�xN − xN−1 − x1 + x2�


+ �1 − G0 cos	�a − k�xN − xN−1 − x2 + x1�

 . �32�

Using Eq. �29� for DN, and substituting Eq. �19� and Eq.
�20� into Eq. �9� we arrive at

��X,Y� =
2 Im C + �C�2�X + Y�

8k2G0�DN�X,Y��4
. �33�

Keeping in mind the explicit expression for ��X ,Y�, Eq.
�33�, the pumped charge Q, given by Eq. �2�, will be of the
form

Q =
e

2�G0
�

A

2 Im C + �C�2�X + Y�
�DN�X,Y��4

dXdY . �34�

In order to proceed further, let us discuss the case when
the quantities A and B 	Eqs. �30� and �31�
 are equal, i.e.,
�a=k�xN−xN−1−x2+x1� and the two parameters X and Y are
varied periodically,

X = X0 + � cos �t �35�

and

Y = X0 + � cos��t − �� , �36�

where X0 is the initial potential and � is the phase difference
of the two parameters. In this case, we can rewrite the char-
acteristic determinant as

DN = D̃0	C�2 cos2��t − �/2� + 2iK� cos��t − �/2� + L
 ,

�37�

where

K = �A − iCX0� cos �/2, �38�

and

L = 1 + 2iAX0 + CX0
2 − C�2 sin2 �/2. �39�

The transmission coefficient is given by
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TN
2 � �DN��t,�,���−4

=
G0

2

8���2
Re �

j=1

2

	 j� 1

	� cos��t − �/2� − cj
2

+
2� j

� cos��t − �/2� − cj
� , �40�

with the different constants cj , 	 j , � j defined as

c1,2 = −
i

C
�K ± �1/2� , �41�

	1,2 = � 1

c1
* − c1,2

−
1

c2
* − c1,2

�2

, �42�

�1,2 =
1

c1
* − c1,2

+
1

c2
* − c1,2

±
1

c2 − c1
, �43�

and

� � K2 + LC

= �A − iCX0�2 cos2 �

2
+ �1 + 2iAX0 + CX0

2 − C�2 sin2 �

2
�C .

�44�

With the specific form chosen for the perturbing potentials,
the pumped current is given by an integral over the ampli-
tude and the period t0 of the perturbations

Q =
e� sin �

�G0
�

0

�

��d���
0

t0

TN
2 ��t,�,���

��Im C + �C�2�X0 + �� cos
�

2
cos��t −

�

2
���dt .

�45�

The integral over the period in Eq. �45� can be performed in
the complex plane, and we finally arrive at

Q =
eG0 sin �

4
�

0

� ��d��

���2
Re �

j=1

2
	 j

� j3
��Im C + �C�2X0�

��cj − 2� j� j
2� + �C�2���2 + 2� j� j

3 − cj� j
2�cos

�

2
� .

�46�

Here

� j = �cj
2 − ��2 sgn��cj + �cj

2 − ��2� − 1� �47�

and always has positive imaginary part �cj
2−��2.

This is our main general result. In the following section
we analyze its limits.

IV. RESULTS

Let us start our discussion of the results from the weak-
pumping regime, which corresponds to the condition

�2sin2�/2 � max�1/C,2X0A/C,X0
2� . �48�

In this limit, �, and consequently c1,2, do not depend on ��
and for the integral equation �46� we have

Q �
eG0 sin �

4���2
Re �

j=1

2

	 j���cj
2 − �2 − cj�

�	��2� j − �cj
2 − �2−1/2� + �C�2X0
 + �2� j�C�2 cos

�

2
� ,

�49�

where �=Im C+ �C�2�X0+cos � /2�. Equation �49� can be
further simplified if, besides the inequality, Eq. �48�, the con-
dition

�1 + 2iX0A + CX0
2� � �A/C − iX0�2 cos2 �/2 �50�

is also satisfied. Then Q reads

Q �
eG0�Im C + �C�2X0� sin �

��1 + 2iX0A + CX0
2�2 + 4�2 cos2 �/2

�2. �51�

As follows from Eq. �51�, if the pumping perturbation � is
weak the charge Q is proportional to the area of the contour
in parametric space5,7 and to sin �. With increasing pumping
strength, Q becomes proportional to the length of the con-
tour9 and to sin � /2, where � is the phase difference of the
oscillations of the two parameters X and Y.

Consider now strong pumping

�2 sin2 �/2 � max�1/C,2X0A/C,X0
2� �52�

and

�2 tan2 �/2 � �A/C − iX0�2. �53�

Under these conditions the pumped charge becomes approxi-
mately equal to

Q �
2eG0�Im C + �C�2X0�

3�A − iCX0�3�C�
1

�3 sin3 �
, �54�

i.e., for large pumping strength � the charge behaves as �−3.
To illustrate these results we present numerical calcula-

tions of Eq. �46� for the case of only two delta functions and
�=� /2. We expect the same behavior of Q as long as G0
=1. Let us start with the case X0=0. The pumped charge
dependence on the amplitude of oscillation is presented in
Fig. 2 for an incident energy E=k2 given by ka=3.1 �a is the
distance between the two delta potentials�. The results for
other incident energies are similar if we plot Q / cos�ka�
�rather than Q� as a function of � sin�ka�. In the inset of Fig.
2, we represent the large � limit of the absolute value of the
same data as in the main part of the figure on a double
logarithmic scale. The data fit fairly well a straight line with
slope −3.18. One can see that in the strong pumping regime
the charge indeed tends to zero as �−3, within numerical
uncertainties, in agreement with Eq. �54�.

If the strengths of the oscillating delta potentials contain a
constant term X0, the behavior of the charge is more inter-
esting as can be seen in Fig. 3, where the Q���-dependence
at X0=100 is presented. In contrast with the X0=0 case, the
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pumped charge approaches the unit of charge in a finite in-
terval of oscillating strengths.

The pumped charge, in the region where it is almost quan-
tized, gets closer and closer to the unit charge as we increase
X0, for a constant incident energy. In Fig. 4, we represent the
difference between the maximum value of the pumped cur-
rent and the unit of charge as a function of X0 on a double
logarithmic scale for the incident energy that corresponds to
ka=3.1. The slope of the fitted straight line is −1.940. Within
numerical errors, the pumped charge approaches e as X0

−2. In
other words in the limit of big X0 , Q�1−G according to
Ref. 9, where G�X0

−2 is the conductance of the system that
tends to zero when X0 increases.

V. CONCLUSION

We evaluated explicitly adiabatic charge transport through
one-dimensional open chain of arbitrarily located delta func-

tions with arbitrary amplitudes. Two of these functions are
supposed to oscillate in strength and thus act as pumping
sources. We show that the charge is proportional to the con-
ductance G0 of the system without these two sources. If the
pumping perturbation � is weak, the charge Q is proportional
to the area of the contour in parametric space.5,7 With in-
creasing pumping strength, Q becomes proportional to the
length of the contour9 and to sin � /2, where � is the phase
difference of the oscillations of the two parameters X and Y.
For even larger pumping strength � the charge decreases as
�� sin ��−3. In the case when the conductance of the system
is close to its maximum G0�1, in a finite range of pumping
potentials the charge is almost quantized, gets closer and
closer to the unit charge as we increase X0, the constant term
of the oscillating potentials. The difference between the
pumped current and the unit of charge tend to zero as G
�X0

−2. In other words in the limit of big X0 , Q�1−G,
where G�X0

−2 is the conductance of the system that tends to
zero when X0 increases.

We believe that a similar analysis can be performed for
the case of a smooth random potential. One has just to em-
ploy the second order differential equation Eq. �25� instead
of the recursion relation Eq. �14�.
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APPENDIX: ADIABATIC CURVATURE ��„X ,Y…

Let us define �	�X ,Y� which characterizes the direction
of the incident flow

�	�X,Y� = �
�

�s	�
*

�X

�s	�

�Y
, �A1�

where 	=L ,R and s	� are the elements of the scattering
matrix s. Note that �	�X ,Y� defined by Eq. �3� is nothing but

FIG. 2. Pumped charge in units of e as a function of the ampli-
tude of oscillation of the intensity of the two delta potentials with-
out a constant term, X0=0. We have considered an incident energy
given by ka=3.1 �a is the distance between the two delta poten-
tials�. Inset: large � limit of the same data in absolute value as in
the main part of the figure on a double logarithmic scale.

FIG. 3. Pumped charge in units of e as a function of the ampli-
tude of oscillation of the intensity of the two delta potentials. These
intensities have a constant term X0=100 and we have considered an
incident energy given by ka=3.1.

FIG. 4. Difference between the pumped current and the unit of
charge as a function of X0 on a double logarithmic scale. The inci-
dent energy is given by ka=3.1. The slope of the fitted straight line
is −1.940.

CHARGE PUMPING IN ONE-DIMENSIONAL KRONIG-… PHYSICAL REVIEW B 72, 195309 �2005�

195309-5



Im �L�X ,Y�. The matrix elements s	,� can be expressed
through the reflection R and transmission T coefficients �T
+R=1�, and two phases: � for the transmission of the am-
plitude and �	, which characterizes the asymmetry between
the reflection to the left and to the right from the 1D potential
V�x�:

s�E� = �r t

t r�
� = ei��− i�Rei�a �T

�T − i�Re−i�a
� . �A2�

We assume that the quantities R , T , �, and �a are functions
of the external parameters X and Y.

As it was shown in the text the adiabatic curvature can be
presented in the form

�L�X,Y� =
�t2 + T��r* + 1�

4k2 �A3�

provided that xI=xL and xII=xR and electrons are incident
from the left. Analogously for the right flow the adiabatic
curvature is

�R�X,Y� =
�t*2 + T��r� + 1�

4k2 =
�t* + t�2

4k2 − �L�X,Y� .

�A4�

From Eqs. �A3� and �A4� follows the general relation

Im �L�X,Y� = − Im �R�X,Y� . �A5�

The real parts of �L�X ,Y� and �R�X ,Y� characterize the
contribution of interference effects to the heat production and
to the noise.18 Contrary to Eq. �A5� there is no general rela-
tion between the real parts, i.e., Re �L�X ,Y��Re �R�X ,Y�.
Indeed, writing the scattering matrix in the form Eq. �A2� we
obtain

Im �L�X,Y� = − Im �R�X,Y�

=
T

2k2 cos ��sin � + �R cos �a� , �A6�

Re �L�X,Y� =
T

2k2 cos ��cos � + �R sin �a� , �A7�

Re �R�X,Y� =
T

2k2 cos ��cos � − �R sin �a� . �A8�

So only when the phase asymmetry is �a=0, i.e., for a spa-
tially symmetric barrier and for symmetrically located xL and
xR, real parts of �L and �R are related

Re �L�X,Y� = Re �R�X,Y� . �A9�

Note that �L�X ,Y�=�R�X ,Y��0 and thus pumping is ab-
sent when �=� /2. This disappearance of the pumping is not
a miracle: condition �=� /2 is equivalent to Y =mX+b with
constant m and b.
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